Performance Analysis of the Vehicle Diesel Engine-ORC Combined System Based on a Screw Expander

نویسندگان

  • Kai Yang
  • Hongguang Zhang
  • Songsong Song
  • Jian Zhang
  • Yuting Wu
  • Yeqiang Zhang
  • Hongjin Wang
  • Ying Chang
چکیده

To achieve energy saving and emission reduction for vehicle diesel engines, the organic Rankine cycle (ORC) was employed to recover waste heat from vehicle diesel engines, R245fa was used as ORC working fluid, and the resulting vehicle diesel engine-ORC combined system was presented. The variation law of engine exhaust energy rate under various operating conditions was obtained, and the running performances of the screw expander were introduced. Based on thermodynamic models and theoretical calculations, the running performance of the vehicle diesel engine-ORC combined system was analyzed under various engine operating condition scenarios. Four evaluation indexes were defined: engine thermal efficiency increasing ratio (ETEIR), waste heat recovery efficiency (WHRE), brake specific fuel consumption (BSFC) of the combined system, and improvement ratio of BSFC (IRBSFC). Results showed that when the diesel engine speed is 2200 r/min and diesel engine torque is 1200 N·m, the power output of the combined system reaches its maximum of approximately 308.6 kW, which is 28.6 kW higher than that of the diesel engine. ETEIR, WHRE, and IRBSFC all reach their maxima at 10.25%, 9.90%, and 9.30%, respectively. Compared with that of the diesel engine, the BSFC of the combined system is obviously improved under various engine operating conditions. OPEN ACCESS Energies 2014, 7 3401

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Parametric Study on Exergy and Exergoeconomic Analysis of a Diesel Engine based Combined Heat and Power System

This paper presents exergy and exergoeconomic analysis and parametric study of a Diesel engine based Combined Heat and Power (CHP) system that produces 277 kW of electricity and 282 kW of heat. For this purpose, the CHP system is first thermodynamically analyzed through energy and exergy. Then cost balances and auxiliary equations are applied to subsystems. The exergoeconomic analysis is based ...

متن کامل

Simulation and Performance Analysis of Organic Rankine Systems for Stationary Compressed Natural Gas Engine

The organic Rankine cycle (ORC) can be used to recover the waste heat from a stationary compressed natural gas (CNG) engine. However, the exhaust energy rate varies with engine load, which can influence the operating performance of the ORC system, therefore, it is necessary to study the running state of the ORC system. In this paper, first, the numerical simulation model of the ORC system is bu...

متن کامل

Study on Mixed Working Fluids with Different Compositions in Organic Rankine Cycle (ORC) Systems for Vehicle Diesel Engines

One way to increase the thermal efficiency of vehicle diesel engines is to recover waste heat by using an organic Rankine cycle (ORC) system. Tests were conducted to study the running performances of diesel engines in the whole operating range. The law of variation of the exhaust energy rate under various engine operating conditions was also analyzed. A diesel engine-ORC combined system was des...

متن کامل

Performance Analysis of an Evaporator for a Diesel Engine–Organic Rankine Cycle (ORC) Combined System and Influence of Pressure Drop on the Diesel Engine Operating Characteristics

The main purpose of this research is to analyze the performance of an evaporator for the organic Rankine cycle (ORC) system and discuss the influence of the evaporator on the operating characteristics of diesel engine. A simulation model of fin-and-tube evaporator of the ORC system is established by using Fluent software. Then, the flow and heat transfer characteristics of the exhaust at the ev...

متن کامل

Energetic and Exergetic Analysis of Internal Combustion Engine Cogeneration System

In this article, the first and second law analysis of diesel engine based cogeneration system was performed. Fuel utilization efficiency, rate of power, and rate of process heat of the plant were determined and various efficiencies based on both energy and exergy methods and the performance assessment parameters are defined for both the system components and the entire cogeneration plant. The o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014